MALDI-TOF mass spectrometry characterization of recombinant hydrophobic mutants containing the GCN4 basic region/leucine zipper motif.
نویسندگان
چکیده
We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize hydrophobic, alanine-rich mutants of the basic region/leucine zipper (bZIP) protein GCN4. These bacterially expressed proteins were generated to probe how small, alpha-helical proteins bind specific DNA sites. Enzymatic digestion mapping combined with MALDI-TOF MS characterization of protein fragments allowed us to resolve mass discrepancies between the expected and observed molecular mass measurements. Changes in mass were attributed to posttranslational modifications (PTMs) by proteolytic cleavage of the initiating methionine residue, carbamylation at the amino terminus, oxidation of histidine side chains, and oxidative addition of beta-mercaptoethanol (BME) at the cysteine side chain. Proteins can undergo a wide variety of co-translational modifications and PTMs during growth, isolation, and purification. Such changes in mass can only be detected by a high-resolution technique such as MALDI, which in conjunction with enzymatic digestion mapping, becomes a powerful methodology for characterization of protein structure.
منابع مشابه
The Leucine Zipper Domains of the Transcription Factors GCN4 and c-Jun Have Ribonuclease Activity
Basic-region leucine zipper (bZIP) proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ) domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of ...
متن کاملA switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants.
Coiled-coil sequences in proteins consist of heptad repeats containing two characteristic hydrophobic positions. The role of these buried hydrophobic residues in determining the structures of coiled coils was investigated by studying mutants of the GCN4 leucine zipper. When sets of buried residues were altered, two-, three-, and four-helix structures were formed. The x-ray crystal structure of ...
متن کاملThe GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex.
The yeast transcriptional activator GCN4 is 1 of over 30 identified eukaryotic proteins containing the basic region leucine zipper (bZIP) DNA-binding motif. We have determined the crystal structure of the GCN4 bZIP element complexed with DNA at 2.9 A resolution. The bZIP dimer is a pair of continuous alpha helices that form a parallel coiled coil over their carboxy-terminal 30 residues and grad...
متن کاملLeucine Zipper Mutants
Coiled-coil sequences in proteins consist of heptad repeats containing two characteristic hydrophobic positions. The role of these buried hydrophobic residues in determining the structures of coiled coils was investigated by studying mutants of the GCN4 leucine zipper. When sets of buried residues were altered, two-, three-, and four-helix structures were formed. The x-ray crystal structure of ...
متن کاملMinimalist proteins: Design of new molecular recognition scaffolds.
We hypothesize that we can exploit what Nature has already evolved by manipulating the alpha-helix molecular recognition scaffold. Therefore, minimalist proteins capable of sequence-specific, high-affinity binding of DNA were generated to probe how proteins are used and can be used to recognize DNA. The already minimal basic region/leucine zipper motif (bZIP) of GCN4 was reduced to an even more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1597 2 شماره
صفحات -
تاریخ انتشار 2002